10th Indian Delegation to Dubai, Gitex & Expand North Star – World’s Largest Startup Investor Connect
Artificial Intelligence

Women In AI: Irene Solaiman, head of global policy at Hugging Face


To give AI-focused women academics and others their well-deserved — and overdue — time in the spotlight, TechCrunch is launching a series of interviews focusing on remarkable women who’ve contributed to the AI revolution. We’ll publish several pieces throughout the year as the AI boom continues, highlighting key work that often goes unrecognized. Read more profiles here.

Irene Solaiman began her career in AI as a researcher and public policy manager at OpenAI, where she led a new approach to the release of GPT-2, a predecessor to ChatGPT. After serving as an AI policy manager at Zillow for nearly a year, she joined Hugging Face as the head of global policy. Her responsibilities there range from building and leading company AI policy globally to conducting socio-technical research.

Solaiman also advises the Institute of Electrical and Electronics Engineers (IEEE), the professional association for electronics engineering, on AI issues, and is a recognized AI expert at the intergovernmental Organization for Economic Co-operation and Development (OECD).

Irene Solaiman, head of global policy at Hugging Face

Briefly, how did you get your start in AI? What attracted you to the field?

A thoroughly nonlinear career path is commonplace in AI. My budding interest started in the same way many teenagers with awkward social skills find their passions: through sci-fi media. I originally studied human rights policy and then took computer science courses, as I viewed AI as a means of working on human rights and building a better future. Being able to do technical research and lead policy in a field with so many unanswered questions and untaken paths keeps my work exciting.

What work are you most proud of (in the AI field)?

I’m most proud of when my expertise resonates with people across the AI field, especially my writing on release considerations in the complex landscape of AI system releases and openness. Seeing my paper on an AI Release Gradient frame technical deployment prompt discussions among scientists and used in government reports is affirming — and a good sign I’m working in the right direction! Personally, some of the work I’m most motivated by is on cultural value alignment, which is dedicated to ensuring that systems work best for the cultures in which they’re deployed. With my incredible co-author and now dear friend, Christy Dennison, working on a Process for Adapting Language Models to Society was a whole of heart (and many debugging hours) project that has shaped safety and alignment work today.

How do you navigate the challenges of the male-dominated tech industry, and, by extension, the male-dominated AI industry?

I’ve found, and am still finding, my people — from working with incredible company leadership who care deeply about the same issues that I prioritize to great research co-authors with whom I can start every working session with a mini therapy session. Affinity groups are hugely helpful in building community and sharing tips. Intersectionality is important to highlight here; my communities of Muslim and BIPOC researchers are continually inspiring.

What advice would you give to women seeking to enter the AI field?

Have a support group whose success is your success. In youth terms, I believe this is a “girl’s girl.” The same women and allies I entered this field with are my favorite coffee dates and late-night panicked calls ahead of a deadline. One of the best pieces of career advice I’ve read was from Arvind Narayan on the platform formerly known as Twitter establishing the “Liam Neeson Principle”of not being the smartest of them all, but having a particular set of skills.

What are some of the most pressing issues facing AI as it evolves?

The most pressing issues themselves evolve, so the meta answer is: International coordination for safer systems for all peoples. Peoples who use and are affected by systems, even in the same country, have varying preferences and ideas of what is safest for themselves. And the issues that arise will depend not only on how AI evolves, but on the environment into which they’re deployed; safety priorities and our definitions of capability differ regionally, such as a higher threat of cyberattacks to critical infrastructure in more digitized economies.

What are some issues AI users should be aware of?

Technical solutions rarely, if ever, address risks and harms holistically. While there are steps users can take to increase their AI literacy, it’s important to invest in a multitude of safeguards for risks as they evolve. For example, I’m excited about more research into watermarking as a technical tool, and we also need coordinated policymaker guidance on generated content distribution, especially on social media platforms.

What is the best way to responsibly build AI?

With the peoples affected and constantly re-evaluating our methods for assessing and implementing safety techniques. Both beneficial applications and potential harms constantly evolve and require iterative feedback. The means by which we improve AI safety should be collectively examined as a field. The most popular evaluations for models in 2024 are much more robust than those I was running in 2019. Today, I’m much more bullish about technical evaluations than I am about red-teaming. I find human evaluations extremely high utility, but as more evidence arises of the mental burden and disparate costs of human feedback, I’m increasingly bullish about standardizing evaluations.

How can investors better push for responsible AI?

They already are! I’m glad to see many investors and venture capital companies actively engaging in safety and policy conversations, including via open letters and Congressional testimonies. I’m eager to hear more from investors’ expertise on what stimulates small businesses across sectors, especially as we’re seeing more AI use from fields outside the core tech industries.



Source link

by Team SNFYI

Facebook is testing a new feature that invites some users—mainly in the US and Canada—to let Meta AI access parts of their phone’s camera roll. This opt-in “cloud processing” option uploads recent photos and videos to Meta’s servers so the AI can offer personalized suggestions, such as creating collages, highlight reels, or themed memories like birthdays and graduations. It can also generate AI-based edits or restyles of those images. Meta says this is optional and assures users that the uploaded media won’t be used for advertising. However, to enable this, people must agree to let Meta analyze faces, objects, and metadata like time and location. Currently, the company claims these photos won’t be used to train its AI models—but they haven’t completely ruled that out for the future. Typically, only the last 30 days of photos get uploaded, though special or older images might stay on Meta’s servers longer for specific features. Users have the option to disable the feature anytime, which prompts Meta to delete the stored media after 30 days. Privacy experts are concerned that this expands Meta’s reach into private, unpublished images and could eventually feed future AI training. Unlike Google Photos, which explicitly states that user photos won’t train its AI, Meta hasn’t made that commitment yet. For now, this is still a test run for a limited group of people, but it highlights the tension between AI-powered personalization and the need to protect personal data.

by Team SNFYI

News Update Bymridul     |    March 14, 2024 Meesho, an online shopping platform based in Bengaluru, has announced its largest Employee Stock Ownership Plan (ESOP) buyback pool to date, totaling Rs 200 crore. This buyback initiative extends to both current and former employees, providing wealth creation opportunities for approximately 1,700 individuals. Ashish Kumar Singh, Meesho’s Chief Human Resources Officer, emphasized the company’s commitment to rewarding its teams, stating, “At Meesho, our employees are the driving force behind our success.” Singh further highlighted the company’s dedication to providing opportunities for wealth creation despite prevailing macroeconomic conditions. This marks the fourth wealth generation opportunity at Meesho, with the size of the buyback program increasing each year. In previous years, Meesho conducted buybacks worth over Rs 8.2 crore in February 2020, Rs 41.4 crore in November 2020, and Rs 45.5 crore in October 2021. Meesho’s profitability journey began in July 2023, making it the first horizontal Indian e-commerce company to achieve profitability. Despite turning profitable, Meesho continues to maintain positive cash flow and focuses on enhancing efficiencies across various cost items. The company’s revenue from operations for FY 2022-23 witnessed a remarkable growth of 77% over the previous year, amounting to Rs 5,735 crore. This growth can be attributed to Meesho’s leadership position as the most downloaded shopping app in India in both 2022 and 2023, increased transaction frequency among existing customers, and a diversified category mix. Additionally, Meesho’s focus on improving monetization through value-added seller services contributed to its revenue growth. Meesho also disclosed its audited performance for the first half of FY 2023-24, reporting consolidated revenues from operations of Rs 3,521 crore, marking a 37% year-over-year increase. The company achieved profitability in Q2 FY24, with a significant reduction in losses compared to the previous year. Furthermore, Meesho recorded impressive app download numbers, reaching 145 million downloads in India in 2023 and surpassing 500 million downloads in H1 FY 2023-24. Follow Startup Story Source link

by Team SNFYI

You might’ve heard of Grok, X’s answer to OpenAI’s ChatGPT. It’s a chatbot, and, in that sense, behaves as as you’d expect — answering questions about current events, pop culture and so on. But unlike other chatbots, Grok has “a bit of wit,” as X owner Elon Musk puts it, and “a rebellious streak.” Long story short, Grok is willing to speak to topics that are usually off limits to other chatbots, like polarizing political theories and conspiracies. And it’ll use less-than-polite language while doing so — for example, responding to the question “When is it appropriate to listen to Christmas music?” with “Whenever the hell you want.” But Grok’s ostensible biggest selling point is its ability to access real-time X data — an ability no other chatbots have, thanks to X’s decision to gatekeep that data. Ask it “What’s happening in AI today?” and Grok will piece together a response from very recent headlines, while ChatGPT, by contrast, will provide only vague answers that reflect the limits of its training data (and filters on its web access). Earlier this week, Musk pledged that he would open source Grok, without revealing precisely what that meant. So, you’re probably wondering: How does Grok work? What can it do? And how can I access it? You’ve come to the right place. We’ve put together this handy guide to help explain all things Grok. We’ll keep it up to date as Grok changes and evolves. How does Grok work? Grok is the invention of xAI, Elon Musk’s AI startup — a startup reportedly in the process of raising billions in venture capital. (Developing AI’s expensive.) Underpinning Grok is a generative AI model called Grok-1, developed over the course of months on a cluster of “tens of thousands” of GPUs (according to an xAI blog post). To train it, xAI sourced data both from the web (dated up to Q3 2023) and feedback from human assistants that xAI refers to as “AI tutors.” On popular benchmarks, Grok-1 is about as capable as Meta’s open source Llama 2 chatbot model and surpasses OpenAI’s GPT-3.5, xAI claims. Image Credits: xAI Human-guided feedback, or reinforcement learning from human feedback (RLHF), is the way most AI-powered chatbots are fine-tuned these days. RLHF involves training a generative model, then gathering additional information to train a “reward” model and fine-tuning the generative model with the reward model via reinforcement learning. RLHF is quite good at “teaching” models to follow instructions — but not perfect. Like other models, Grok is prone to hallucinating, sometimes offering misinformation and false timelines when asked about news. And these can be severe — like wrongly claiming that the Israel–Palestine conflict reached a ceasefire when it hadn’t. For questions that stretch beyond its knowledge base, Grok leverages “real-time access” to info on X (and from Tesla, according to Bloomberg). And, similar to ChatGPT, the model has internet browsing capabilities, enabling it to search the web for up-to-date information about topics. Musk has promised improvements with the …