10th Indian Delegation to Dubai, Gitex & Expand North Star – World’s Largest Startup Investor Connect
Artificial Intelligence

Largest text-to-speech AI model yet shows ’emergent abilities’


Researchers at Amazon have trained the largest ever text-to-speech model yet, which they claim exhibits “emergent” qualities improving its ability to speak even complex sentences naturally. The breakthrough could be what the technology needs to escape the uncanny valley.

These models were always going to grow and improve, but the researchers specifically hoped to see the kind of leap in ability that we observed once language models got past a certain size. For reasons unknown to us, once LLMs grow past a certain point, they start being way more robust and versatile, able to perform tasks they weren’t trained to.

That is not to say they are gaining sentience or anything, just that past a certain point their performance on certain conversational AI tasks hockey sticks. The team at Amazon AGI — no secret what they’re aiming at — thought the same might happen as text-to-speech models grew as well, and their research suggests this is in fact the case.

The new model is called Big Adaptive Streamable TTS with Emergent abilities, which they have contorted into the abbreviation BASE TTS. The largest version of the model uses 100,000 hours of public domain speech, 90% of which is in English, the remainder in German, Dutch, and Spanish.

At 980 million parameters, BASE-large appears to be the biggest model in this category. They also trained 400M- and 150M-parameter models based on 10,000 and 1,000 hours of audio respectively, for comparison — the idea being, if one of these models shows emergent behaviors but another doesn’t, you have a range for where those behaviors begin to emerge.

As it turns out, the medium-sized model showed the jump in capability the team was looking for, not necessarily in ordinary speech quality (it is reviewed better but only by a couple points) but in the set of emergent abilities they observed and measured. Here are examples of tricky text mentioned in the paper:

  • Compound nouns: The Beckhams decided to rent a charming stone-built quaint countryside holiday cottage.
  • Emotions: “Oh my gosh! Are we really going to the Maldives? That’s unbelievable!” Jennie squealed, bouncing on her toes with uncontained glee.
  • Foreign words: “Mr. Henry, renowned for his mise en place, orchestrated a seven-course meal, each dish a pièce de résistance.
  • Paralinguistics (i.e. readable non-words): “Shh, Lucy, shhh, we mustn’t wake your baby brother,” Tom whispered, as they tiptoed past the nursery.
  • Punctuations: She received an odd text from her brother: ’Emergency @ home; call ASAP! Mom & Dad are worried…#familymatters.’
  • Questions: But the Brexit question remains: After all the trials and tribulations, will the ministers find the answers in time?
  • Syntactic complexities: The movie that De Moya who was recently awarded the lifetime achievement award starred in 2022 was a box-office hit, despite the mixed reviews.

“These sentences are designed to contain challenging tasks – parsing garden-path sentences, placing phrasal stress on long-winded compound nouns, producing emotional or whispered speech, or producing the correct phonemes for foreign
words like “qi” or punctuations like “@” – none of which BASE TTS is explicitly trained to perform,” the authors write.

Such features normally trip up text-to-speech engines, which will mispronounce, skip words, use odd intonation, or make some other blunder. BASE TTS still had trouble, but it did far better than its contemporaries — models like Tortoise and VALL-E.

There are a bunch of examples of these difficult texts being spoken quite naturally by the new model at the site they made for it. Of course these were chosen by the researchers, so they’re necessarily cherry-picked, but it’s impressive regardless. Here are a couple, if you don’t feel like clicking through:


Because the three BASE TTS models share an architecture, it seems clear that the size of the model and the extent of its training data seem to be the cause of the model’s ability to handle some of the above complexities. Bear in mind this is still an experimental model and process — not a commercial model or anything. Later research will have to identify the inflection point for emergent ability and how to train and deploy the resulting model efficiently.

Notably, this model is “streamable,” as the name says — meaning it doesn’t need to generate whole sentences at once but goes moment by moment at a relatively low bitrate. The team has also attempted to package the speech metadata like emotionality, prosody, and so on in a separate, low-bandwidth stream that could accompany vanilla audio.

It seems that text-to-speech models may have a breakout moment in 2024 — just in time for the election! But there’s no denying the usefulness of this technology, for accessibility in particular. The team does note that it declined to publish the model’s source and other data due to the risk of bad actors taking advantage of it. The cat will get out of that bag eventually, though.



Source link

by Team SNFYI

Facebook is testing a new feature that invites some users—mainly in the US and Canada—to let Meta AI access parts of their phone’s camera roll. This opt-in “cloud processing” option uploads recent photos and videos to Meta’s servers so the AI can offer personalized suggestions, such as creating collages, highlight reels, or themed memories like birthdays and graduations. It can also generate AI-based edits or restyles of those images. Meta says this is optional and assures users that the uploaded media won’t be used for advertising. However, to enable this, people must agree to let Meta analyze faces, objects, and metadata like time and location. Currently, the company claims these photos won’t be used to train its AI models—but they haven’t completely ruled that out for the future. Typically, only the last 30 days of photos get uploaded, though special or older images might stay on Meta’s servers longer for specific features. Users have the option to disable the feature anytime, which prompts Meta to delete the stored media after 30 days. Privacy experts are concerned that this expands Meta’s reach into private, unpublished images and could eventually feed future AI training. Unlike Google Photos, which explicitly states that user photos won’t train its AI, Meta hasn’t made that commitment yet. For now, this is still a test run for a limited group of people, but it highlights the tension between AI-powered personalization and the need to protect personal data.

by Team SNFYI

News Update Bymridul     |    March 14, 2024 Meesho, an online shopping platform based in Bengaluru, has announced its largest Employee Stock Ownership Plan (ESOP) buyback pool to date, totaling Rs 200 crore. This buyback initiative extends to both current and former employees, providing wealth creation opportunities for approximately 1,700 individuals. Ashish Kumar Singh, Meesho’s Chief Human Resources Officer, emphasized the company’s commitment to rewarding its teams, stating, “At Meesho, our employees are the driving force behind our success.” Singh further highlighted the company’s dedication to providing opportunities for wealth creation despite prevailing macroeconomic conditions. This marks the fourth wealth generation opportunity at Meesho, with the size of the buyback program increasing each year. In previous years, Meesho conducted buybacks worth over Rs 8.2 crore in February 2020, Rs 41.4 crore in November 2020, and Rs 45.5 crore in October 2021. Meesho’s profitability journey began in July 2023, making it the first horizontal Indian e-commerce company to achieve profitability. Despite turning profitable, Meesho continues to maintain positive cash flow and focuses on enhancing efficiencies across various cost items. The company’s revenue from operations for FY 2022-23 witnessed a remarkable growth of 77% over the previous year, amounting to Rs 5,735 crore. This growth can be attributed to Meesho’s leadership position as the most downloaded shopping app in India in both 2022 and 2023, increased transaction frequency among existing customers, and a diversified category mix. Additionally, Meesho’s focus on improving monetization through value-added seller services contributed to its revenue growth. Meesho also disclosed its audited performance for the first half of FY 2023-24, reporting consolidated revenues from operations of Rs 3,521 crore, marking a 37% year-over-year increase. The company achieved profitability in Q2 FY24, with a significant reduction in losses compared to the previous year. Furthermore, Meesho recorded impressive app download numbers, reaching 145 million downloads in India in 2023 and surpassing 500 million downloads in H1 FY 2023-24. Follow Startup Story Source link

by Team SNFYI

You might’ve heard of Grok, X’s answer to OpenAI’s ChatGPT. It’s a chatbot, and, in that sense, behaves as as you’d expect — answering questions about current events, pop culture and so on. But unlike other chatbots, Grok has “a bit of wit,” as X owner Elon Musk puts it, and “a rebellious streak.” Long story short, Grok is willing to speak to topics that are usually off limits to other chatbots, like polarizing political theories and conspiracies. And it’ll use less-than-polite language while doing so — for example, responding to the question “When is it appropriate to listen to Christmas music?” with “Whenever the hell you want.” But Grok’s ostensible biggest selling point is its ability to access real-time X data — an ability no other chatbots have, thanks to X’s decision to gatekeep that data. Ask it “What’s happening in AI today?” and Grok will piece together a response from very recent headlines, while ChatGPT, by contrast, will provide only vague answers that reflect the limits of its training data (and filters on its web access). Earlier this week, Musk pledged that he would open source Grok, without revealing precisely what that meant. So, you’re probably wondering: How does Grok work? What can it do? And how can I access it? You’ve come to the right place. We’ve put together this handy guide to help explain all things Grok. We’ll keep it up to date as Grok changes and evolves. How does Grok work? Grok is the invention of xAI, Elon Musk’s AI startup — a startup reportedly in the process of raising billions in venture capital. (Developing AI’s expensive.) Underpinning Grok is a generative AI model called Grok-1, developed over the course of months on a cluster of “tens of thousands” of GPUs (according to an xAI blog post). To train it, xAI sourced data both from the web (dated up to Q3 2023) and feedback from human assistants that xAI refers to as “AI tutors.” On popular benchmarks, Grok-1 is about as capable as Meta’s open source Llama 2 chatbot model and surpasses OpenAI’s GPT-3.5, xAI claims. Image Credits: xAI Human-guided feedback, or reinforcement learning from human feedback (RLHF), is the way most AI-powered chatbots are fine-tuned these days. RLHF involves training a generative model, then gathering additional information to train a “reward” model and fine-tuning the generative model with the reward model via reinforcement learning. RLHF is quite good at “teaching” models to follow instructions — but not perfect. Like other models, Grok is prone to hallucinating, sometimes offering misinformation and false timelines when asked about news. And these can be severe — like wrongly claiming that the Israel–Palestine conflict reached a ceasefire when it hadn’t. For questions that stretch beyond its knowledge base, Grok leverages “real-time access” to info on X (and from Tesla, according to Bloomberg). And, similar to ChatGPT, the model has internet browsing capabilities, enabling it to search the web for up-to-date information about topics. Musk has promised improvements with the …