10th Indian Delegation to Dubai, Gitex & Expand North Star – World’s Largest Startup Investor Connect
AI

Hugging Face releases a benchmark for testing generative AI on health tasks


Generative AI models are increasingly being brought to healthcare settings — in some cases prematurely, perhaps. Early adopters believe that they’ll unlock increased efficiency while revealing insights that’d otherwise be missed. Critics, meanwhile, point out that these models have flaws and biases that could contribute to worse health outcomes.

But is there a quantitative way to know how helpful, or harmful, a model might be when tasked with things like summarizing patient records or answering health-related questions?

Hugging Face, the AI startup, proposes a solution in a newly released benchmark test called Open Medical-LLM. Created in partnership with researchers at the nonprofit Open Life Science AI and the University of Edinburgh’s Natural Language Processing Group, Open Medical-LLM aims to standardize evaluating the performance of generative AI models on a range of medical-related tasks.

Open Medical-LLM isn’t a from-scratch benchmark, per se, but rather a stitching-together of existing test sets — MedQA, PubMedQA, MedMCQA and so on — designed to probe models for general medical knowledge and related fields, such as anatomy, pharmacology, genetics and clinical practice. The benchmark contains multiple choice and open-ended questions that require medical reasoning and understanding, drawing from material including U.S. and Indian medical licensing exams and college biology test question banks.

“[Open Medical-LLM] enables researchers and practitioners to identify the strengths and weaknesses of different approaches, drive further advancements in the field and ultimately contribute to better patient care and outcome,” Hugging Face wrote in a blog post.

gen AI healthcare

Image Credits: Hugging Face

Hugging Face is positioning the benchmark as a “robust assessment” of healthcare-bound generative AI models. But some medical experts on social media cautioned against putting too much stock into Open Medical-LLM, lest it lead to ill-informed deployments.

On X, Liam McCoy, a resident physician in neurology at the University of Alberta, pointed out that the gap between the “contrived environment” of medical question-answering and actual clinical practice can be quite large.

Hugging Face research scientist Clémentine Fourrier, who co-authored the blog post, agreed.

“These leaderboards should only be used as a first approximation of which [generative AI model] to explore for a given use case, but then a deeper phase of testing is always needed to examine the model’s limits and relevance in real conditions,” Fourrier replied on X. “Medical [models] should absolutely not be used on their own by patients, but instead should be trained to become support tools for MDs.”

It brings to mind Google’s experience when it tried to bring an AI screening tool for diabetic retinopathy to healthcare systems in Thailand.

Google created a deep learning system that scanned images of the eye, looking for evidence of retinopathy, a leading cause of vision loss. But despite high theoretical accuracy, the tool proved impractical in real-world testing, frustrating both patients and nurses with inconsistent results and a general lack of harmony with on-the-ground practices.

It’s telling that of the 139 AI-related medical devices the U.S. Food and Drug Administration has approved to date, none use generative AI. It’s exceptionally difficult to test how a generative AI tool’s performance in the lab will translate to hospitals and outpatient clinics, and, perhaps more importantly, how the outcomes might trend over time.

That’s not to suggest Open Medical-LLM isn’t useful or informative. The results leaderboard, if nothing else, serves as a reminder of just how poorly models answer basic health questions. But Open Medical-LLM, and no other benchmark for that matter, is a substitute for carefully thought-out real-world testing.





Source link

AI
by The Economic Times

IBM said Tuesday that it planned to cut thousands of workers as it shifts its focus to higher-growth businesses in artificial intelligence consulting and software. The company did not specify how many workers would be affected, but said in a statement the layoffs would “impact a low single-digit percentage of our global workforce.” The company had 270,000 employees at the end of last year. The number of workers in the United States is expected to remain flat despite some cuts, a spokesperson added in the statement. A massive supplier of technology to… Source link

AI
by The Economic Times

The number of Indian startups entering famed US accelerator and investor Y Combinator’s startup programme might have dwindled to just one in 2025, down from the high of 2021, when 64 were selected. But not so for Indian investors, who are queuing up to find the next big thing in AI by relying on shortlists made by YC to help them filter their investments. In 2025, Indian investors have invested in close to 10 Y Combinator (YC) AI startups in the US. These include Tesora AI, CodeAnt, Alter AI and Frizzle, all with Indian-origin founders but based in… Source link

by Techcrunch

Lovable, the Stockholm-based AI coding platform, is closing in on 8 million users, CEO Anton Osika told this editor during a sit-down on Monday, a major jump from the 2.3 million active users number the company shared in July. Osika said the company — which was founded almost exactly one year ago — is also seeing “100,000 new products built on Lovable every single day.” Source link