10th Indian Delegation to Dubai, Gitex & Expand North Star – World’s Largest Startup Investor Connect
Artificial Intelligence

AI2 open sources text-generating AI models — and the data used to train them


The Allen Institute for AI (AI2), the nonprofit AI research institute founded by late Microsoft co-founder Paul Allen, is releasing several GenAI language models it claims are more “open” than others — and, importantly, licensed in such a way that developers can use them unfettered for training, experimentation and even commercialization

Called OLMo, an acronym for “Open Language Models,” the models and the dataset used to train them, Dolma — one of the largest public datasets of its kind — were designed to study the high-level science behind text-generating AI, according to AI2 senior software engineer Dirk Groeneveld.

“‘Open’ is an overloaded term when it comes to [text-generating models],” Groeneveld told TechCrunch in an email interview. “We expect researchers and practitioners will seize the OLMo framework as an opportunity to analyze a model trained on one of the largest public data sets released to date, along with all the components necessary for building the models.”

Open source text-generating models are becoming a dime a dozen, with organizations from Meta to Mistral releasing highly capable models for any developer to use and fine-tune. But Groeneveld makes the case that many of these models can’t really be considered open because they were trained “behind closed doors” and on proprietary, opaque sets of data.

By contrast, the OLMo models, which were created with the help of partners including Harvard, AMD and Databricks, ship with the code that was used to produce their training data as well as training and evaluation metrics and logs.

In terms of performance, the most capable OLMo model, OLMo 7B, is a “compelling and strong” alternative to Meta’s Llama 2, Groeneveld asserts — depending on the application. On certain benchmarks, particularly those touching on reading comprehension, OLMo 7B edges out Llama 2. But in others, particularly question-answering tests, OLMo 7B is slightly behind.

The OLMo models have other limitations, like low-quality outputs in languages that aren’t English (Dolma contains mostly English-language content) and weak code-generating capabilities. But Groeneveld stressed that it’s early days.

“OLMo is not designed to be multilingual — yet,” he said. “[And while] at this stage, the primary focus of the OLMo framework [wasn’t] code generation, to give a head start to future code-based fine-turning projects, OLMo’s data mix currently contains about 15% code.”

I asked Groeneveld whether he was concerned that the OLMo models, which can be used commercially and are performant enough to run on consumer GPUs like the Nvidia 3090, might be leveraged in unintended, possibly malicious ways by bad actors. A recent study by Democracy Reporting International’s Disinfo Radar project, which aims to identify and address disinformation trends and technologies, found that two popular open text-generating models, Hugging Face’s Zephyr and Databricks’ Dolly, reliably generate toxic content — responding to malevolent prompts with “imaginative” harmful content.

Groeneveld believes that the benefits outweigh the harms in the end.

“[B]uilding this open platform will actually facilitate more research on how these models can be dangerous and what we can do to fix them,” he said. “Yes, it’s possible open models may be used inappropriately or for unintended purposes. [However, this] approach also promotes technical advancements that lead to more ethical models; is a prerequisite for verification and reproducibility, as these can only be achieved with access to the full stack; and reduces a growing concentration of power, creating more equitable access.”

In the coming months, AI2 plans to release larger and more capable OLMo models, including multimodal models (i.e. models that understand modalities beyond text), and additional datasets for training and fine-tuning. As with the initial OLMo and Dolma release, all resources will be made available for free on GitHub and the AI project hosting platform Hugging Face.



Source link

by Team SNFYI

Facebook is testing a new feature that invites some users—mainly in the US and Canada—to let Meta AI access parts of their phone’s camera roll. This opt-in “cloud processing” option uploads recent photos and videos to Meta’s servers so the AI can offer personalized suggestions, such as creating collages, highlight reels, or themed memories like birthdays and graduations. It can also generate AI-based edits or restyles of those images. Meta says this is optional and assures users that the uploaded media won’t be used for advertising. However, to enable this, people must agree to let Meta analyze faces, objects, and metadata like time and location. Currently, the company claims these photos won’t be used to train its AI models—but they haven’t completely ruled that out for the future. Typically, only the last 30 days of photos get uploaded, though special or older images might stay on Meta’s servers longer for specific features. Users have the option to disable the feature anytime, which prompts Meta to delete the stored media after 30 days. Privacy experts are concerned that this expands Meta’s reach into private, unpublished images and could eventually feed future AI training. Unlike Google Photos, which explicitly states that user photos won’t train its AI, Meta hasn’t made that commitment yet. For now, this is still a test run for a limited group of people, but it highlights the tension between AI-powered personalization and the need to protect personal data.

by Team SNFYI

News Update Bymridul     |    March 14, 2024 Meesho, an online shopping platform based in Bengaluru, has announced its largest Employee Stock Ownership Plan (ESOP) buyback pool to date, totaling Rs 200 crore. This buyback initiative extends to both current and former employees, providing wealth creation opportunities for approximately 1,700 individuals. Ashish Kumar Singh, Meesho’s Chief Human Resources Officer, emphasized the company’s commitment to rewarding its teams, stating, “At Meesho, our employees are the driving force behind our success.” Singh further highlighted the company’s dedication to providing opportunities for wealth creation despite prevailing macroeconomic conditions. This marks the fourth wealth generation opportunity at Meesho, with the size of the buyback program increasing each year. In previous years, Meesho conducted buybacks worth over Rs 8.2 crore in February 2020, Rs 41.4 crore in November 2020, and Rs 45.5 crore in October 2021. Meesho’s profitability journey began in July 2023, making it the first horizontal Indian e-commerce company to achieve profitability. Despite turning profitable, Meesho continues to maintain positive cash flow and focuses on enhancing efficiencies across various cost items. The company’s revenue from operations for FY 2022-23 witnessed a remarkable growth of 77% over the previous year, amounting to Rs 5,735 crore. This growth can be attributed to Meesho’s leadership position as the most downloaded shopping app in India in both 2022 and 2023, increased transaction frequency among existing customers, and a diversified category mix. Additionally, Meesho’s focus on improving monetization through value-added seller services contributed to its revenue growth. Meesho also disclosed its audited performance for the first half of FY 2023-24, reporting consolidated revenues from operations of Rs 3,521 crore, marking a 37% year-over-year increase. The company achieved profitability in Q2 FY24, with a significant reduction in losses compared to the previous year. Furthermore, Meesho recorded impressive app download numbers, reaching 145 million downloads in India in 2023 and surpassing 500 million downloads in H1 FY 2023-24. Follow Startup Story Source link

by Team SNFYI

You might’ve heard of Grok, X’s answer to OpenAI’s ChatGPT. It’s a chatbot, and, in that sense, behaves as as you’d expect — answering questions about current events, pop culture and so on. But unlike other chatbots, Grok has “a bit of wit,” as X owner Elon Musk puts it, and “a rebellious streak.” Long story short, Grok is willing to speak to topics that are usually off limits to other chatbots, like polarizing political theories and conspiracies. And it’ll use less-than-polite language while doing so — for example, responding to the question “When is it appropriate to listen to Christmas music?” with “Whenever the hell you want.” But Grok’s ostensible biggest selling point is its ability to access real-time X data — an ability no other chatbots have, thanks to X’s decision to gatekeep that data. Ask it “What’s happening in AI today?” and Grok will piece together a response from very recent headlines, while ChatGPT, by contrast, will provide only vague answers that reflect the limits of its training data (and filters on its web access). Earlier this week, Musk pledged that he would open source Grok, without revealing precisely what that meant. So, you’re probably wondering: How does Grok work? What can it do? And how can I access it? You’ve come to the right place. We’ve put together this handy guide to help explain all things Grok. We’ll keep it up to date as Grok changes and evolves. How does Grok work? Grok is the invention of xAI, Elon Musk’s AI startup — a startup reportedly in the process of raising billions in venture capital. (Developing AI’s expensive.) Underpinning Grok is a generative AI model called Grok-1, developed over the course of months on a cluster of “tens of thousands” of GPUs (according to an xAI blog post). To train it, xAI sourced data both from the web (dated up to Q3 2023) and feedback from human assistants that xAI refers to as “AI tutors.” On popular benchmarks, Grok-1 is about as capable as Meta’s open source Llama 2 chatbot model and surpasses OpenAI’s GPT-3.5, xAI claims. Image Credits: xAI Human-guided feedback, or reinforcement learning from human feedback (RLHF), is the way most AI-powered chatbots are fine-tuned these days. RLHF involves training a generative model, then gathering additional information to train a “reward” model and fine-tuning the generative model with the reward model via reinforcement learning. RLHF is quite good at “teaching” models to follow instructions — but not perfect. Like other models, Grok is prone to hallucinating, sometimes offering misinformation and false timelines when asked about news. And these can be severe — like wrongly claiming that the Israel–Palestine conflict reached a ceasefire when it hadn’t. For questions that stretch beyond its knowledge base, Grok leverages “real-time access” to info on X (and from Tesla, according to Bloomberg). And, similar to ChatGPT, the model has internet browsing capabilities, enabling it to search the web for up-to-date information about topics. Musk has promised improvements with the …