10th Indian Delegation to Dubai, Gitex & Expand North Star – World’s Largest Startup Investor Connect
Artificial Intelligence

Daedalus, which is building precision-manufacturing factories powered by AI, raises $21M


A fledgling startup founded by one of OpenAI’s first engineering hires is looking to “redefine manufacturing,” with AI-powered factories for creating bespoke precision parts.

Daedalus, as the company is called, is based in the southwestern German city of Karlsruhe, where its solo factory is currently housed. Here, Daedalus takes orders from industries such as medical devices, aerospace, defence, and semiconductors, each requiring unique components for their products. For example, a pharmaceutical company might require a customized metal casing for a valve used in the production of a particular medicine.

As it looks to ramp up operations with a view toward opening additional factories in its domestic market, Daedalus today announced it has raised $21 million in a Series A round of funding led by Nokia-funded NGP Capital, with participation from existing investors Khosla Ventures and Addition.

This takes Daedalus’s total funding past the $40 million mark, with other notable investors including Y Combinator (YC) which became involved after Daedalus participated in YC’s Winter 2020 program.

The Daedalus factory floor

The Daedalus factory floor Image Credits: Daedalus

Fragmented fabrication

The manufacturing industry — particularly as it relates to precision part fabrication — is hugely fragmented by just about every estimation. While it’s tempting to imagine that a typical manufacturing setup in 2024 is something akin to that of a large automotive assembly plant, this really only applies where high-volume products (like cars) are involved — the reality is somewhat different when you get down to the level of precisions parts used in industrial machinery.

A company that has been designing industry-specific valves for decades likely won’t be manufacturing everything itself internally. It will typically rely on an old-school network of manufacturers which may mean working with a small business consisting of a single expert “craftsman” and a handful of helpers working from a small facility. 

“What this means is they’re not doing much in terms of digitization, and it’s difficult to change that because they’re just used to working with pen and paper, basically,” Daedalus founder and CEO Jonas Schneider told TechCrunch. “So you have these very low-tech manufacturers supplying the most critical components for these extremely high-end products.”

Daedalus founder & CEO Jonas Schneider

Daedalus founder & CEO Jonas Schneider Image Credits: Daedalus

Founded in 2019, Daedalus uses similar off-the-shelf hardware available to any manufacturer, but its special sauce lies in the software it deploys on top to control and optimize the “shop floor” — that is, it automates many of the manual tasks involved in producing a particular part. So a customer will send their CAD (computer aided design) drawings as usual, and Daedalus develops these drawings to a finished part with automation permeating the process.

“It’s about orchestrating all of the workflows across the production, planning and scheduling of those running around on the factory floor doing the work,” Schneider said.

For context, when production begins for a new “part” in a machine, there are typically dozens of steps and hundreds of decisions involved that impact what tooling will be needed, what settings to use to create the precise shape and dimensions of the part, and so on. And this is where Daedalus enters the fray — its software captures the manufacturing decisions data of one “part,” and uses that to guide the decisions around how a similar part is created in the future. So a slightly bigger valve, or a valve with an extra fitting, might be substantively the same as an earlier part, thus Daedalus uses pattern matching to apply that previous knowledge to configure its machines for the new part.

In many ways, Daedalus extends the basic concept of 3D printing, which has been democratizing the manufacturing process for more than a decade. But with machine learning smarts under the hood, it’s taking things to the next level — it’s like 3D printing on steroids.

“The comparison is very apt — as an outsider to this industry in the beginning, to me it seemed like custom manufacturing had [already] been solved with 3D printing. But it mostly comes down to technical limitations of the process,” Schneider said. “With 3D printing, it still means that you need to design a new part specifically so that it can be 3D-printed, and that actually ends up being quite an expensive process. But for the vast majority of the industrial base, it’s not really feasible, and they can’t do 3D printing because it’s not precise enough, or the materials are not strong enough.

You can frame what what we’re doing, in a sense, as taking this idea from 3D printing and applying it to industrial grade, high-end parts.”

The story so far

Prior to Daedalus, Schneider was technical lead at OpenAI where he was instrumental in getting the company’s robotics division off the ground in 2016. Indeed, OpenAI might be better known today for its flagship ChatGPT AI chatbot, but the company also operated a robotics unit which conducted research into things like solving a Rubik’s Cube with a robotic hand, a project that Schneider was directly involved in.

OpenAI's Rubik's Cube hand

OpenAI’s Rubik’s Cube hand Image Credits: OpenAI

OpenAI ultimately disbanded this team in 2021, but Schneider had spearheaded the software engineering side of operations for more than three years before he departed to start Daedalus in 2019.

While there were various reasons why Schneider ended up leaving to form his own startup, there was one experience he encountered building the Rubik Cube hand which played a bit part in his decision to launch Daedalus.

“At one point, the robot hand broke down and we had to get spare parts,” Schneider said. “And guess what? They needed to be precision manufactured. So there were these machines just like ours today, but we had to wait months to get these parts. And I thought, why is it so hard to get spare parts here? All of this contributed to me looking at this whole manufacturing space a bit more.”

For now, Daedalus has a single 50,000 square-foot factory factory in Karlsruhe from where it largely targets the German-speaking markets including Austria and Switzerland. In the near term, the plan is to expand to a second factory in Germany, and then further afield if demand is sufficient.

“This is the blueprint factory, right? This is where we’re learning all of the systems and all of the knowledge and distilling it into our way of producing these parts,” Schneider said. “And then in the long run, we’ll put these factories wherever our customers need them.”



Source link

by Team SNFYI

Facebook is testing a new feature that invites some users—mainly in the US and Canada—to let Meta AI access parts of their phone’s camera roll. This opt-in “cloud processing” option uploads recent photos and videos to Meta’s servers so the AI can offer personalized suggestions, such as creating collages, highlight reels, or themed memories like birthdays and graduations. It can also generate AI-based edits or restyles of those images. Meta says this is optional and assures users that the uploaded media won’t be used for advertising. However, to enable this, people must agree to let Meta analyze faces, objects, and metadata like time and location. Currently, the company claims these photos won’t be used to train its AI models—but they haven’t completely ruled that out for the future. Typically, only the last 30 days of photos get uploaded, though special or older images might stay on Meta’s servers longer for specific features. Users have the option to disable the feature anytime, which prompts Meta to delete the stored media after 30 days. Privacy experts are concerned that this expands Meta’s reach into private, unpublished images and could eventually feed future AI training. Unlike Google Photos, which explicitly states that user photos won’t train its AI, Meta hasn’t made that commitment yet. For now, this is still a test run for a limited group of people, but it highlights the tension between AI-powered personalization and the need to protect personal data.

by Team SNFYI

News Update Bymridul     |    March 14, 2024 Meesho, an online shopping platform based in Bengaluru, has announced its largest Employee Stock Ownership Plan (ESOP) buyback pool to date, totaling Rs 200 crore. This buyback initiative extends to both current and former employees, providing wealth creation opportunities for approximately 1,700 individuals. Ashish Kumar Singh, Meesho’s Chief Human Resources Officer, emphasized the company’s commitment to rewarding its teams, stating, “At Meesho, our employees are the driving force behind our success.” Singh further highlighted the company’s dedication to providing opportunities for wealth creation despite prevailing macroeconomic conditions. This marks the fourth wealth generation opportunity at Meesho, with the size of the buyback program increasing each year. In previous years, Meesho conducted buybacks worth over Rs 8.2 crore in February 2020, Rs 41.4 crore in November 2020, and Rs 45.5 crore in October 2021. Meesho’s profitability journey began in July 2023, making it the first horizontal Indian e-commerce company to achieve profitability. Despite turning profitable, Meesho continues to maintain positive cash flow and focuses on enhancing efficiencies across various cost items. The company’s revenue from operations for FY 2022-23 witnessed a remarkable growth of 77% over the previous year, amounting to Rs 5,735 crore. This growth can be attributed to Meesho’s leadership position as the most downloaded shopping app in India in both 2022 and 2023, increased transaction frequency among existing customers, and a diversified category mix. Additionally, Meesho’s focus on improving monetization through value-added seller services contributed to its revenue growth. Meesho also disclosed its audited performance for the first half of FY 2023-24, reporting consolidated revenues from operations of Rs 3,521 crore, marking a 37% year-over-year increase. The company achieved profitability in Q2 FY24, with a significant reduction in losses compared to the previous year. Furthermore, Meesho recorded impressive app download numbers, reaching 145 million downloads in India in 2023 and surpassing 500 million downloads in H1 FY 2023-24. Follow Startup Story Source link

by Team SNFYI

You might’ve heard of Grok, X’s answer to OpenAI’s ChatGPT. It’s a chatbot, and, in that sense, behaves as as you’d expect — answering questions about current events, pop culture and so on. But unlike other chatbots, Grok has “a bit of wit,” as X owner Elon Musk puts it, and “a rebellious streak.” Long story short, Grok is willing to speak to topics that are usually off limits to other chatbots, like polarizing political theories and conspiracies. And it’ll use less-than-polite language while doing so — for example, responding to the question “When is it appropriate to listen to Christmas music?” with “Whenever the hell you want.” But Grok’s ostensible biggest selling point is its ability to access real-time X data — an ability no other chatbots have, thanks to X’s decision to gatekeep that data. Ask it “What’s happening in AI today?” and Grok will piece together a response from very recent headlines, while ChatGPT, by contrast, will provide only vague answers that reflect the limits of its training data (and filters on its web access). Earlier this week, Musk pledged that he would open source Grok, without revealing precisely what that meant. So, you’re probably wondering: How does Grok work? What can it do? And how can I access it? You’ve come to the right place. We’ve put together this handy guide to help explain all things Grok. We’ll keep it up to date as Grok changes and evolves. How does Grok work? Grok is the invention of xAI, Elon Musk’s AI startup — a startup reportedly in the process of raising billions in venture capital. (Developing AI’s expensive.) Underpinning Grok is a generative AI model called Grok-1, developed over the course of months on a cluster of “tens of thousands” of GPUs (according to an xAI blog post). To train it, xAI sourced data both from the web (dated up to Q3 2023) and feedback from human assistants that xAI refers to as “AI tutors.” On popular benchmarks, Grok-1 is about as capable as Meta’s open source Llama 2 chatbot model and surpasses OpenAI’s GPT-3.5, xAI claims. Image Credits: xAI Human-guided feedback, or reinforcement learning from human feedback (RLHF), is the way most AI-powered chatbots are fine-tuned these days. RLHF involves training a generative model, then gathering additional information to train a “reward” model and fine-tuning the generative model with the reward model via reinforcement learning. RLHF is quite good at “teaching” models to follow instructions — but not perfect. Like other models, Grok is prone to hallucinating, sometimes offering misinformation and false timelines when asked about news. And these can be severe — like wrongly claiming that the Israel–Palestine conflict reached a ceasefire when it hadn’t. For questions that stretch beyond its knowledge base, Grok leverages “real-time access” to info on X (and from Tesla, according to Bloomberg). And, similar to ChatGPT, the model has internet browsing capabilities, enabling it to search the web for up-to-date information about topics. Musk has promised improvements with the …